Comparison of Edge Turbulence Imaging at Two Different Poloidal Locations in the Scrape-off Layer of Alcator C-Mod

S.J. Zweben¹, J.L. Terry², M. Agostini³, W.M. Davis¹, A. Diallo¹, R.A. Ellis¹,
 T. Golfinopoulos², O. Grulke⁴, J.W. Hughes², B. LaBombard²,
 M. Landreman², J.R. Myra⁵, D.C. Pace⁶, D.P. Stotler¹

¹ Princeton Plasma Physics Laboratory, Princeton, NJ 08540 USA
 ² Massachusetts Institute of Technology, Cambridge, MA 02139 USA
 ³Consorzio RFX, Associazione EURATOM, I-35127, Padova, Italy
 ⁴ Max Planck Institute for Plasma Physics, EURATOM Association, D-17491 Greifswald, Germany
 ⁵ Lodestar Research Corporation, 2400 Central Ave., Boulder CO 80301, USA
 ⁶ General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA

Poster – Transport Task Force Meeting, Santa Rosa, CA April 2013

Motivating Questions (and Results)

- Is the *turbulence structure* in the SOL the same near the outer midplane and the lower X-point region of C-Mod ?
 - relative fluctuation levels and frequencies are similar
 - size and ellipticity of turbulence cross-correlation are similar
 - tilt angle of turbulence correlations are significantly different
- Is the *turbulence velocity* in the SOL the same near the outer midplane and the lower X-point region of C-Mod ?
 - time-averaged turbulence velocities are usually different
 - fluctuations in turbulence velocity are usually different

Location of Two Gas Puff Imaging Views

showing field line map of circular flux tube started at outer midplane

B Field Line Mapping Between Views

- B field lines do *not* connect between midplane and X-region views
- Cross-correlation of turbulence between these two views is low

Typical Images of Edge/SOL Turbulence

- Made using HeI (587.6 nm) line filter looking at He gas puffs
- Camera @ 391,000 frames/sec, 2 μs/frame, 64x64 pixels/frame
- Normalized movies can be seen http://w3.pppl.gov/~szweben

<u>Time-Averaged Turbulence Analysis</u>

- Subsequent analyses averaged over 3-5 msec in steady-state
- Obvious transients avoided (i.e. no ELMs or L-H transitions)
- Typical SOL parameters from edge Thomson scattering below

<u>parameter</u>	1120224	1120815
regime	L-mode	H-mode
ρ (cm)	0.5±0.5	0.5±0.5
n _e (10 ¹⁹ m ⁻³)	3.1±1.1	4.9±0.6
T _e (eV)	21±5	18±2
L _n (cm)	1.1	1.2
L _{Te} (cm)	0.6	0.5
L _{11, min} (m)	~ 4	~ 8
$\rho_{s}^{\prime\prime}$ (cm)	~10 ⁻²	~10 ⁻²
$v_{e*}(m_e/m_i)^{1/2}$	0.4	1.6
β	~3 x10⁻⁵	~3x10⁻⁵

Database of C-Mod Shots

Shot	Time (sec)	I(MA)	B(T) n (m ⁻³)	RF(MW)	Gap*(cm) Discharge type
Pup day 1.						
TUIT Udy 1.	0 704 0 740		1 1 1 0 20	2.2	1.2	L
1120224009	0./01-0./16	0.9 4.6	1.1×10^{20}	2.3	1.3	L-mode
1120224015	0.810-0.814	1.0 6.0	1.3×10^{20}	3.7	1.1	L-mode
1120224022	1.044-1.048	1.0 5.2	1.0x10 ²⁰	2.6	1.2	L-mode
1120224023	1.113-1.116	1.0 5.2	1.4x10 ²⁰	3.0	1.3	ELM-free H-mode
1120224024	1.130-1.135	1.0 5.2	1.7x10 ²⁰	2.8	1.5	ELM-free H-mode
1120224027	1.144-1.148	0.9 4.6	1.3x10 ²⁰	3.0	1.4	L-mode
Run day 2:						
1120712026	1.440-1.444	0.73 4.2	3.5x10 ²⁰	0	0.2	Ohmic H-mode
1120712027	1.440-1.444	0.73 4.2	3.6×10^{20}	0	0.1	Ohmic H-mode
1120712028	1.440-1.443	0.73 5.0	2.6×10^{20}	0	0.1	Ohmic H-mode
1120712029	1.440-1.443	0.73 5.0	2.2x10 ²⁰	0	0.1	Ohmic H-mode
Run day 3:						
1120815018	1.270-1.274	0.90 5.6	2.5 x10 ²⁰	2.9	1.4	ELMv H-mode
1120815021	1,190-1,193	0.91 5.6	2.0×10^{20}	2.0	1.4	FI My H-mode
1120815030	1 260-1 264	0 91 5 6	1.9×10^{20}	2.6	15	FI My H-mode
1120015050	1 150-1 152	0.0156	2.0×10^{20}	2.0	17	ELMy H-mode
1120013034	T.T.20-T.T.22	0.27.2.0	2.0 XIU	J.T	1./	LLIVIY II-IIIUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

• outer gap distance between outer midplane separatrix and innermost outer limiter

Basic Turbulence Characteristics

- Relative fluctuation level similar at midplane and X-region
- Autocorrelation time similar (sometimes larger in X-region)
- Frequency spectrum similar in midplane and X-region

Typical Cross-Correlation Structures

- Midplane correlation in SOL slightly tilted from flux surface
- X-region correlation in SOL elongated in major radius direction
- Small wave-like negative cross-correlations in many cases
- Similar results for both L-mode and H-mode plasmas

Cross-Correlation Structures in 2-D

- Cross-correlation ellipses evaluated at correlation of 0.7
- Slow variation of size and tilt over 2-D view in both regions, where ellipses below reduced in size by x3 to avoid overlap
- Subsequent analyses for central gray regions near ρ = 1 cm

Spatial Correlation Sizes and Areas

- Maximum length of correlation ellipses similar in both views
- Minimum length of correlation ellipses smaller in X-region
- Area of correlation ellipses ~0.8 time smaller in X-region, as expected from magnetic field mapping between regions

Ellipticity and Tilt of Correlation Structures

- Ellipticity of structures is slightly larger in X-region than midplane
- Tilt angle of structures very different in midplane and X-region
- Tilt angles measured with respect to major radius, with local flux surface tilt angles shown by horizontal lines

Turbulence Velocity Maps in 2-D

- Velocities derived from 2-D time-delayed cross-correlation analysis
- Turbulence velocities are different at midplane and X-region
- There is often small-scale structure to velocity in each region

Turbulence Velocity Maps in 2-D...cont...

- Velocities derived from 2-D time-delayed cross-correlation analysis
- Turbulence velocities are different at midplane and X-region
- There is often small-scale structure in 2-D velocity in each region

Radial Profiles of Average Poloidal Velocity

- These profiles are averaged over 0.5 cm radial zones in 2-D maps
- Different points are velocities for different shots in each run
- Poloidal velocities are usually different in midplane and X-region

Midplane vs. X-region Average Velocities

- These profiles are averaged over 0.5 cm radial zones in 2-D maps
- Sometime poloidal velocities are in a opposite poloidal directions
- Radial velocities outward and smaller than poloidal velocities

Edge Coherent Oscillations

- Sometimes there are edge oscillations in $D\alpha$ and in GPI signal level
- These are seen in poloidal velocity in both midplane and X-region
- These were seen only in run 1120224 at ~2-5 kHz (not MHD)

Correlation of Midplane vs. X-region Velocity

- Velocities in each region averaged over 0.5 cm radial zones
- Maximum time-delayed cross-correlation usually ≤0.15 (random)
- Only significant cross-correlation during edge coherent modes

=> no evidence for long-range zonal flows in SOL

Longer Time Dependence of Turbulence

- Previous analyses were for 3-5 msec/shot, below 50 msec/shot
- No significant change in structure or velocity over 50 msec
- Exceptions are during ELMs and L-H transitions (not shown)

Comparison with Flux Tube Mapping

- Midplane tilt and ellipticity fit to ellipses, then mapped to X-region
- Measured X-region tilt and ellipticity are similar to mapping model

Turbulence Structure vs. V, grad V, curl V

• Turbulence structure is roughly independent of the local poloidal velocity, and of the gradient or curl of local velocity

Some Unresolved Issues

- Effects of ICRF antenna electric fields on turbulence structure and velocity need more data with no-RF and large outer gaps
- Reconcile high parallel cross-correlation along B field line found with incomplete fit to flux tube mapping model
- Reconcile velocities obtained by cross-correlation method with velocities obtained from slope of S(ω,k) spectra

Some Possible Future Directions

- Add other poloidal and toroidal GPI views, e.g. along a B field line
- Improve 3-D modeling of GPI gas puff using local plasma profiles
- Improve analysis to characterize 2-D structures and velocities
- Compare GPI results with other turbulence and flow diagnostics
- Explain SOL turbulence using first-principles 3-D simulations

Conclusions

- The *turbulence structure* is similar at midplane and X-point region
 - relative fluctuation levels and frequencies are similar
 - size and ellipticity of turbulence cross-correlation are similar
 - tilt angle of turbulence correlations are significantly different,
 but at least partially consistent with flux tube mapping
- The *turbulence velocity* is different at midplane and X-point region
 - time-averaged turbulence velocities are usually different
 - 2-D structure of time-averaged velocity is usually different
 - fluctuations in turbulence velocity are usually different